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Abstract

Neuroanatomical segmentation in magnetic resonance imaging (MRI) of the brain is a

prerequisite for quantitative volume, thickness, and shape measurements, as well as an

important intermediate step in many preprocessing pipelines. This work introduces a

new highly accurate and versatile method based on 3D convolutional neural networks

for the automatic segmentation of neuroanatomy in T1-weighted MRI. In combination

with a deep 3D fully convolutional architecture, efficient linear registration-derived spa-

tial priors are used to incorporate additional spatial context into the network. An aggres-

sive data augmentation scheme using random elastic deformations is also used to

regularize the networks, allowing for excellent performance even in cases where only

limited labeled training data are available. Applied to hippocampus segmentation in an

elderly population (mean Dice coefficient = 92.1%) and subcortical segmentation in a

healthy adult population (mean Dice coefficient = 89.5%), we demonstrate new state-of-

the-art accuracies and a high robustness to outliers. Further validation on a multi-

structure segmentation task in a scan–rescan dataset demonstrates accuracy (mean Dice

coefficient = 86.6%) similar to the scan–rescan reliability of expert manual segmentations

(mean Dice coefficient = 86.9%), and improved reliability compared to both expert man-

ual segmentations and automated segmentations using FIRST. Furthermore, our method

maintains a highly competitive runtime performance (e.g., requiring only 10 s for left/

right hippocampal segmentation in 1 × 1 × 1 mm3 MNI stereotaxic space), orders of

magnitude faster than conventional multiatlas segmentation methods.

K E YWORD S

deep learning, magnetic resonance imaging, neural networks, neuroanatomy, segmentation,

spatial priors

†Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI

contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Received: 21 December 2018 Revised: 7 September 2019 Accepted: 9 September 2019

DOI: 10.1002/hbm.24803

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.

Hum Brain Mapp. 2020;41:309–327. wileyonlinelibrary.com/journal/hbm 309

https://orcid.org/0000-0003-3431-6006
mailto:philip.novosad@mail.mcgill.ca
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/hbm


1 | INTRODUCTION

Accurate structural segmentation of magnetic resonance (MR) brain

images is essential for volume, thickness, and shape measurements.

Such quantitative measurements are widely used in neuroscience to

characterize structural changes associated with age and disease.

Given the often prohibitive cost of consistent and reliable expert man-

ual segmentations, a vast number of diverse and fully automated seg-

mentation methods have been proposed. While earlier segmentation

methods generally employed various heuristics tailored for the seg-

mentation task at hand, more recent segmentation methods are more

accurate and attempt to transfer labels from a set of expertly labeled

images (atlases) to the target image. Some such methods have

attempted to learn complex mappings between image features

and labels using traditional machine-learning based classifiers

(e.g., support vector machines (Boser, Guyon, & Vapnik, 1992) and

random forests (Breiman, 2001)) combined with handcrafted feature

sets (Morra et al., 2010; Zikic et al., 2012), while others have found

success transferring labels using a combination of linear or nonlinear

image registration with local and/or nonlocal label fusion (so-called

“multiatlas segmentation” methods (Coupé et al., 2011, Heckemann,

Hajnal, Aljabar, Rueckert, & Hammers, 2006, Iglesias & Sabuncu,

2015)). Indeed, many state-of-the-art results (e.g., hippocampus seg-

mentation (Zandifar, Fonov, Coupé, Pruessner, & Collins, 2017) and

brain extraction (Novosad & Collins, 2018) exploit a complementary

combination of both multiatlas segmentation and machine-learning

methods (e.g., error correction (EC) (Wang et al., 2011)).

More recently, convolutional neural networks (CNNs) (LeCun

et al., 1989) have been used for MR image segmentation, obtaining

similar or better performance compared to the previous state of the

art while requiring only a fraction of the processing time (despite long

training times). CNNs are particularly attractive because they have the

potential to model more complicated functions without the need for

handcrafted feature sets, instead autonomously learning to extract

task-dependent discriminative features from the training data. Also in

contrast to traditional machine-learning classifiers, by stacking many

convolutional layers sequentially and/or by incorporating down-

sampling operations into the network architectures, CNNs have the

capacity to model increasingly complex and long-range spatial rela-

tionships in the input, contributing to their excellent performance on

image segmentation tasks in particular. However, repeated convolu-

tions and/or downsampling steps produce coarse features, leading to

low-resolution segmentations that can be particularly problematic

when targeting smaller structures. Therefore, explicitly multiscale

architectures are often preferred, which are capable of preserving

local detail while still enabling the modeling of complex long-range

spatial relationships. For example, Kamnitsas et al. (2017) and

Ghafoorian et al. (2017) both adopt multiscale, multipath architectures

which take as input patches extracted at different resolutions, and

perform late fusion between the extracted features from the different

resolutions. Other works adapt popular architectures such as the

U-Net (Ronneberger, Fischer, & Brox, 2015) (adapted in Guha Roy,

Conjeti, Navab, and Wachinger (2018)) and DenseNet (Huang, Liu,

van der Maaten, & Weinberger, 2017) (adapted in Dolz, Ayed, Yuan

et al. (2017), Dolz, Desrosiers, and Ben Ayed (2017), and Dolz,

Desrosiers, Wang et al. (2017)), both of which use skip connections in

order to leverage multiscale information.

Due to hardware limitations of modern graphics processing units

(GPUs), modern volumetric medical images (e.g., MR or tomography

scans) typically cannot fit into memory, and need to be subsampled in

order to be processed by a CNN. Most commonly, 3D networks are

trained on smaller 3D patches (Dolz, Desrosiers, & Ben Ayed, 2017;

Kamnitsas et al., 2017), or 2D networks on single 2D slices (Guha Roy

et al., 2018). Therefore, despite the development of recent architectures

which are capable of better modeling complex, long-range and multiscale

spatial relationships in the input, the implicit spatial context available to

the network is still limited, and it is often useful to explicitly provide the

network with additional spatial contextual information. Examples of

applications which leverage spatial contextual features include that of de

Brebisson and Montana (2015), which incorporates distances from pre-

defined neuroanatomical structures, that of Wachinger, Reuter, and Klein

(2017), which incorporates spatial and spectral coordinates (by comput-

ing eigenfunctions of the Laplace–Beltrami operator on a pre-estimated

brain mask), that of Kushibar et al. (2018), which incorporates

nonlinear-registration-based atlas probabilities, and that of Ghafoorian,

Karssemeijer, et al. (2017), which incorporates a handcrafted combination

of such features. While the addition of such features has been shown to

result in better performance, the computation of such features is often

extremely expensive relative to the time required to apply a trained

CNN, limiting the efficiency of the methods.

In this work, we propose a novel CNN-based method for the auto-

mated segmentation of neuroanatomy in brain MR images. To maxi-

mize spatial context available to the network, we combine a deep 3D

fully CNN with dense connections for multiscale processing with

explicitly provided spatial contextual information through the use of

linear-registration-derived spatial priors. We furthermore regularize

our trained networks with a data augmentation scheme based on ran-

dom elastic deformations, increasing the generalizability of the trained

networks particularly in cases where limited labeled training subjects

are available. We extensively validate our method on three neuroana-

tomical segmentation tasks using different manually labeled datasets,

showing in each case consistently more accurate and robust perfor-

mance compared to state-of-the-art multiatlas segmentation and

other CNN-based methods, while maintaining a highly competitive

runtime performance. Using a scan–rescan dataset, we also demon-

strate that our proposed method achieves excellent scan–rescan reli-

ability, with an accuracy comparable to the scan–rescan reliability of

repeated expert manual segmentations.

2 | METHODS AND MATERIALS

2.1 | Baseline network

In contrast to traditional machine-learning classifiers which treat their

inputs as unordered vectors, CNNs explicitly treat their inputs as
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spatially structured images and work by extracting hierarchical and

discriminative representations using sequential applications of the

core building-block known as a “convolutional layer” (LeCun et al.,

1989). The function of a convolutional layer is to convolve its input

with multiple learned filters and then apply a nonlinear activation

function (otherwise, the network would just learn a linear transform

of the input data). Assuming a simplified network architecture con-

sisting only of convolutional layers, the convolutional filter Wk,n
l at

network layer l is applied across all the ml−1 feature maps produced

by the previous convolutional layer l−1, resulting in a new set of fea-

ture maps, to which a position-wise nonlinear activation function f() is

applied. For example, kth output feature map at layer l is given by:

ykl = f
Xml−1

n=1

Wk,n
l *xnl−1 + b

k
l

 !
ð1Þ

where ml is the number of convolutional filters in layer l, xnl−1 is the

nth feature map of the input to layer l, Wk,n
l is the kth learnable filter,

and bkl is the learnable bias.

We take as our starting point a 3D fully convolutional network,

variants of which have shown success in tasks such as brain tumor

and ischemic stroke lesion segmentation (Kamnitsas et al., 2017), as

well as subcortical structure segmentation (Dolz, Desrosiers, & Ben

Ayed, 2017). Instead of using fully connected layers and predicting

the label of only one or several voxels for each input patch

(Ghafoorian, Karssemeijer, et al., 2017; Kushibar et al., 2018;

Wachinger et al., 2017), fully convolutional networks discard fully

connected layers and produce dense label estimates for whole pat-

ches at a time. Consequently, fully convolutional networks have many

fewer parameters (and are therefore less prone to overfitting) and

preserve the spatial structure of the input. Also following Kamnitsas

et al. (2017) and Dolz, Desrosiers, and Ben Ayed (2017), we entirely

avoid downsampling or max-pooling layers to preserve the spatial res-

olution of the output segmentations.

Our baseline architecture takes as input a 3D patch with size 253

and N channels (e.g., different MR imaging (MRI) contrasts or priors

[Section 2.2.1]), and returns a smaller 3D patch label estimate with

volume 93 × C centered on the same respective spatial coordinates in

image space, where C is the number of classes. Figure 1 depicts

the network architecture schematically, and detailed architectural

specifications (including the number of filters and the activation func-

tion at each convolutional layer) are provided in Table 1. First, a series

of convolutional layers (L1 through L8 in Figure 1 and Table 1) with fil-

ters of size 3 × 3 × 3 are applied, without padding and with unit stride

(in order to preserve spatial resolution). We note that therefore each

application of a 3 × 3 × 3 convolution layer reduces the size of resul-

tant input feature maps by two voxels in each dimension: after eight

3 × 3 × 3 convolutional layers, the size of the feature maps is there-

fore reduced from 253 to 93. While padding could be used prior to

each convolution in order to preserve the size of the feature maps

throughout the network, like the work of Kamnitsas et al. (2017) and

Dolz, Desrosiers, and Ben Ayed (2017), we opted against this

approach, allowing us to explore deeper architectures that would oth-

erwise be prohibitively expensive in terms of GPU memory.

While the first layers of a CNN extract high-resolution feature

maps which respond to basic local image features such as edges, due

to repeated convolution, the feature maps extracted from the deeper

layers tend to have lower resolution and respond to more global and

abstract image features. Ideally, a classifier should consider features

extracted across all scales of the input, that is, features extracted from

each convolutional layer rather than only the last. To this end, similar

to Dolz, Desrosiers, and Ben Ayed (2017), we follow Huang et al.

(2017) and use a “dense connection” after layer L8 which consists of

the channel-wise concatenation of the feature maps produced by the

preceding convolutional layers L1 through L8. In this way, the last con-

volutional layers following the dense connection have direct access to

the multiscale feature maps produced by each the preceding con-

volutional layers, and are therefore capable of maintaining feature

maps with high spatial resolution while also considering complex and

long-range characteristics of the input. The dense connection also

encourages feature reuse and improves the convergence properties of

the network during training by providing a more direct path during

backpropagation between the calculated loss and the earlier con-

volutional layers (Huang et al., 2017). We note that since the output

feature maps produced by each convolutional layers have different

sizes, only the central 93 voxels of each feature map are concatenated.

The concatenated feature maps are then batch normalized (Ioffe &

Szegedy, 2015) to make the first and second order statistics of feature

maps consistent across channels and layers, improving convergence.

The batch-normalized concatenated feature maps are then further

processed by two convolutional layers (L10 and L11 in Figure 1 and

F IGURE 1 Schematic of baseline architecture. The network takes as input a 253 × N patch (here, spatial coordinates patches are
concatenated with the input image patch as described in Section 2.2.1) and returns a multichannel probabilistic label estimate for the central 93

voxels. The dimensionality of the output of each layer is reported as size × number of feature maps. Detailed specifications for each layer are
reported in Table 1
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Table 1) with filters of size 1 × 1 × 1. These layers serve to model

inter-channel (and therefore also multiscale) dependencies and also to

reduce the number of feature maps prior to being fed into final classi-

fication layer. Dropout (Srivastava, Hinton, Krizhevsky, Sutskever, &

Salakhutdinov, 2014) (with drop probability p = 0.1) is applied after

both L10 and L11 to help regularize the model. The final classification

layer (L12 in Figure 1 and Table 1) processes the resulting features

using a set of C filters (where C is the number of classes under consid-

eration) of size 1 × 1 × 1, producing a probabilistic label estimate

image pc of size 9 × 9 × 9 for each class c.

Network parameters (i.e., convolutional filters and biases) are esti-

mated iteratively by optimizing the loss function in Equation (2) using

a gradient-descent optimizer over minibatches of size B. The loss

function ℒ to be minimized is defined as:

ℒ= J+ α Wk k22 ð2Þ

where α (empirically set to 1 × 10−4 in our experiments) penalizes the

l2 norm of the network filters W, reducing overfitting, and J is the cat-

egorical cross-entropy loss:

J= −
1

B×V

XC
c=1

XB
b=1

XV
v =1

cvblogpcvb ð3Þ

where pcv
b
is the output of the final classification layer for voxel v and

class c, and cvb is the corresponding reference label. The training proce-

dure is further detailed in Section 2.4.

2.2 | Adding spatial priors

2.2.1 | Spatial coordinates

Though other works have explored the effects of augmenting their

architectures with spatial coordinates and/or spatial probability maps,

this is typically accomplished by concatenating a single vector to the

output of a flattened fully connected layer (Ghafoorian, Karssemeijer,

et al., 2017; Kushibar et al., 2018; Wachinger et al., 2017) which has

no analogue in the proposed network. Furthermore, as our fully con-

volutional network makes predictions for whole patches rather than

one or several voxels, the features associated with each voxel should

be augmented with their respective spatial coordinates rather than

that of the central voxel only. We therefore make use of whole spatial

coordinate patches: given an input patch centered on spatial coordi-

nate (x,y,z) in image space, we extract three additional patches (with

the same spatial dimensions as the input patch) centered on spatial

coordinate (x,y,z) from each of three “coordinate images.” For exam-

ple, for the x-coordinate image, the value at spatial coordinate (x,y,z) is

simply x, and similar for the y- and z-coordinate images. The three spa-

tial coordinate patches are then concatenated with the image inten-

sity patch, forming a multichannel input (e.g., N = 4 channels for a

single MRI modality with spatial coordinate priors) before being fed

into the first layer of the network.

2.2.2 | Working volumes

In order to benefit from the explicit incorporation of spatial coordi-

nates into the network input, it is important that all images are regis-

tered to a common space. For anatomically regular structures which

present relatively little variation in shape and location after registra-

tion, we can further take advantage of this spatial alignment by defin-

ing, given a set of training subjects, a working volume in which

patches are extracted when training and applying the networks.

For each structure of interest c, we first obtain a class-specific

boundary-like working volume Bc by subtracting the union

Uc =[I
i=1M

c
i from the intersection Ic =\I

i=1M
c
i of all training subject

labels Mc
i for the given structure of interest. In other words, each

class-specific working volume includes only voxels for which there is

inconsistency among the training subject labels with respect to the

presence of c, and therefore highlights the spatial region where the

absence or presence of the respective structure is uncertain. In our

experiments, we opt to conservatively dilate each working volume to

ensure that it is appropriate for (unseen) test subjects, that is,

Bc = D� (Uc−Ic), where D is the dilation structuring element (here set

to 3 ×3 ×3 voxels). Finally, the spatial region in which the presence

of the respective structure is certain is further stored as a positive vol-

ume Pc = Ic −(Ic
T

Bc), for use at test time.

A final working volume B is obtained by forming the union of all

class-specific working volumes, that is, B=[C
c=1B

c. Example working

TABLE 1 Baseline network architecture specifications. The network has roughly 220,000 parameters (depending on the number of classes C
and the number of input channels N). For each layer, if applicable, the size and number of learnable filters is reported in the third column as (filter
size) × number of filters. A corresponding schematic depiction of the network architecture is shown in Figure 1

Operation Filters Nonlinearity Input dimension Output dimension Notes

L1 Convolution (3 × 3 × 3) × 32 ELU 25 × 25 × 25 × N 23 × 23 × 23 × 32 —

L2–L8 Convolution (3 × 3 × 3) × 32 ELU 23 × 23 × 23 × 32 9 × 9 × 9 × 32 —

L9 Dense connection — — (9 × 9 × 9 × 32) × 8 9 × 9 × 9 × 256 BN

L10 Convolution (1 × 1 × 1) × 128 ELU 9 × 9 × 9 × 256 9 × 9 × 9 × 128 DO

L11 Convolution (1 × 1 × 1) × 64 ELU 9 × 9 × 9 × 128 9 × 9 × 9 × 64 DO

L12 Convolution (1 × 1 × 1) × C Spatial softmax 9 × 9 × 9 × 64 9 × 9 × 9 × C —

Abbreviations: BN, batch normalization; DO, dropout (with dropout probability 0.1); ELU, exponential linear unit.
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volumes are shown in Figure 2. Using working volumes has two pri-

mary advantages. First, during training, all samples are drawn from the

working volume B (such samples are approximately class-balanced, as

described in Section 2.4), forcing the network to learn from more chal-

lenging examples. Second, at test time, the network is only required

to evaluate the uncertain voxels contained within the working volume,

decreasing processing time. We note that to obtain the final label esti-

mate for a test subject, the label estimate within the working volume

must be combined with the positive volumes (e.g., the inner core of

the thalami in the third row of Figure 2).

2.3 | Data augmentation with random elastic
deformations

Deep neural networks, which have a high modeling capacity, are par-

ticularly dependent on the availability of large quantities of labeled

training data in order to generalize well to new unseen test data. In

the context of MRI segmentation, low numbers of training samples

are typically encountered due to the high cost of generating manually

annotated data. To remedy this problem, data augmentation can be

used to artificially expand the training set. Commonly, this is accom-

plished by applying user-specified but label-preserving transforma-

tions to the training data, such as reflections, rotations, and flips.

However, since in the present work, all images are linearly registered

in a common space and are therefore approximately the same size

and with the same orientation, these transformations would be

counterproductive. Rather, the relevant differences between linearly

registered images are local and nonlinear in nature. To create plausible

synthetic training samples, we therefore chose to apply random 3D

elastic deformations using a method based on Simard, Steinkraus, and

Platt (2003).

To generate a random elastic deformation, we first generate a

3D vector field (where each vector element specifies the per-pixel

displacement in each of the x, y, and z directions, respectively) with

the same spatial dimensions as the input samples, and then assign

each vector element a random value selected from the uniform dis-

tribution U(−1,1). The vector field is then smoothed in each direc-

tion using Gaussian kernels with standard deviation σe (controlling

the elasticity of the deformation), normalized to have a mean per-

pixel displacement of one, and then multiplied by a constant αi

(controlling the intensity of the deformation), producing the final

deformation. During training, we apply data augmentation on the

fly by generating a different random data augmentation transfor-

mation for each sample prior to being fed through the network. The

random elastic deformation is then used to interpolate each train-

ing sample (i.e., the image appearance patch, the three spatial coor-

dinates patches, and the reference label image) using linear

interpolation. We note that applying linear interpolation introduces

a slight blurring in the label images, which itself can be useful as a

regularization technique (Szegedy, Vanhoucke, Ioffe, Shlens, &

Wojna, 2016). The parameters σe and αi were determined using a

coarse grid search, detailed in Section 3.1.3.

F IGURE 2 Example working volumes
overlaid on random subjects from the
hippocampus (top row), subcortical
(middle row), and multistructure (bottom
row) segmentation experiments
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2.4 | Training and testing

Network parameters are optimized iteratively using RMSProp

(Tieleman & Hinton, 2012), an adaptive stochastic gradient descent

algorithm, with Nesterov momentum (Nesterov, 1983) (momen-

tum = 0.9) for acceleration. At each training iteration, we sample

approximately 2,000 voxels, with an equal number of voxels sampled

from each training subject. Since CNNs are sensitive to class imbal-

ance, we sample an equal number of voxels from each structure (back-

ground included). Training samples (i.e., whole patches) are then

extracted around each selected voxel, and image appearance patches

are individually normalized to zero mean and unit SD. All training sam-

ples are then randomly shuffled and processed by the network in

batches of size B. Network weights are randomly initialized with the

Glorot method (Glorot & Bengio, 2010), and all biases are initialized to

zero. Training was performed on a single NVIDIA TITAN X with

12 GB GPU memory. Software was coded in Python, and used Lasa-

gne (Dieleman et al., 2015), a lightweight library to build and train the

neural networks in Theano (Al-Rfou et al., 2016).

To counter overfitting, we employ the early stopping technique,

whereby a randomly selected validation subject set (taken here to be

20%) is held out from the training subject set. Before training, a fixed

validation set is obtained by randomly sampling a fixed number of pat-

ches from each validation subject within the working volume. Unlike

during the training phase, we extract the validation set uniformly

(i.e., without enforcing class balance), so that the distribution of clas-

ses in the validation set better approximates the true distribution of

classes within the working volume. During training, at each iteration,

the average categorical cross-entropy loss (Equation (3)) over the vali-

dation set is measured. The final weights for the trained model are

taken from the iteration which achieved the lowest validation loss,

and training is stopped if the previously attained lowest validation

error does not further decrease after 30 iterations. A static learning

rate of 2.5 × 10−4 is used for training the networks. This value was

empirically determined in our preliminary experiments following the

suggestions described by Bengio (2012), i.e., by roughly finding the

smallest learning rate which caused training to diverge, and then divid-

ing it in half. When training the baseline network, we process the sam-

ples in smaller batches of size B = 128.

At testing, we apply the trained network with a stride of four

voxels in each dimension, averaging the patch label estimates where

they overlap. Further reducing the stride (i.e., increasing the overlap

between patch label estimates) did not significantly improve perfor-

mance in preliminary studies. We further apply a fast and simple post-

processing step which consists in only keeping the largest connected

component for each label, thereby eliminating isolated clusters of

false positives.

3 | EXPERIMENTS AND RESULTS

We first assessed the impact of spatial priors, architecture depth and

width, and data augmentation on the task of hippocampal

segmentation in the ADNI-1 (http://adni.loni.usc.edu) (Jack et al.,

2008; Mueller et al., 2005) dataset. To demonstrate the versatility of

the proposed segmentation method, we further applied it subcortical

segmentation using the IBSR (http://www.nitrc.org/projects/ibsr/)

dataset, and multistructure segmentation using the OASIS (https://

www.oasis-brains.org/) (Marcus et al., 2007) scan–rescan dataset.

Dataset and preprocessing specifications are provided in the respec-

tive sections below.

We assess segmentation accuracy and reliability using the Dice

coefficient. The Dice coefficient measures the extent of spatial over-

lap between two binary images:

Dice = 100%×2 A\Rj j= Aj j+ Rj jð Þ ð4Þ

where A is an automatically segmented label image, R is the reference

label image, \ is the intersection, and |�| counts the number of non-

zero elements. We here express the Dice coefficient as a percentage,

with 100% indicating perfect overlap. For multilabel images, we com-

pute the Dice coefficient for each structure independently.

Segmentations with high general overlap may nonetheless have

clinically important differences in their boundaries. To measure these

differences, we also use the modified Hausdorff distance (MHD)

(Dubuisson & Jain, 1994):

MHD=max h A,Rð Þ,h R,Að Þð Þ ð5Þ

where h(A,R) is the mean distance of the set of minimum distances

between each labeled voxel in A and its nearest labeled voxel in R; h

(R,A) is computed similarly. For the MHD, lower values are better.

Finally, we assess the statistical significance of differences

between distributions of Dice coefficients and MHD values using

nonparametric Wilcoxon signed-rank tests.

3.1 | Application to hippocampus segmentation:
Effect of spatial priors, architecture, and data
augmentation

The hippocampal dataset consists of 60 T1-weighted (T1w) 1.5 T

scans (acquired using an MP-RAGE sequence [Mugler III &

Brookeman, 1990]) from the multicenter ADNI-1 dataset, each with

manually segmented (Pruessner et al., 2000) left and right hippocampi.

Twenty subjects were selected from each of the following clinical sub-

groups: normal controls, mild cognitive impairment, and Alzheimer's

disease. Since this dataset was previously used to compare several

state-of-the-art algorithms (Zandifar et al., 2017), for our experiments,

we use the same data (e.g., previously preprocessed as described in

Zandifar et al.) to enable meaningful comparisons with the results

reported in the aforementioned work. Pre-processing consisted of

patch-based (PB) denoising (Coupé et al., 2008), N3 nonuniformity

correction (Sled, Zijdenbos, & Evans, 1998), linear intensity normaliza-

tion to the range [0,100], and affine registration to the MNI-ICBM152

template (Fonov et al., 2011) with 1 × 1 × 1 mm3 resolution. We

trained our networks to segment both the right and left hippocampi.
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To obtain a segmentation for each subject, we carried out a fivefold

cross-validation (i.e., 48 training subjects and 12 testing subjects per

fold) with each fold containing the same number of subjects from

each clinical subgroup.

3.1.1 | Effect of spatial priors

Mean Dice and MHD values for several variants of the baseline net-

work (CNN-B) are reported in Table 2. We also include in Table 2

results without the postprocessing step (keeping only the largest con-

nected component for each segmented structure, i.e. removing iso-

lated clusters of false positives). Postprocessing was crucial for

obtaining good performance with CNN-B, (reducing the mean MHD

from 4.59 to 0.27 mm and increasing mean Dice from 87.2 to 90.6%,

p < 1 × 10−20), but produced more subtle improvements when applied

to the methods using either the working volumes or spatial coordi-

nates, and smaller improvements still when applied to the method

incorporating both spatial priors. Nonetheless, the effect of post-

processing remained statistically significant (p < 1 × 10−4) with

respect to mean MHD and mean Dice when applied to the latter

method. For the fairest possible comparisons, we use postprocessing

in all CNN-based methods for the subsequent experiments.

Augmenting CNN-B with spatial coordinates (CNN-SC) only or

using working volumes (CNN-WV) only both resulted in statistically

significant (p ≤ 1 × 10−3) increases in performance with respect to

both mean Dice and mean MHD. Combining both spatial priors (CNN-

SP) resulted in the best performance (mean Dice = 91.5%, mean

MHD = 0.23 mm), a statistically significant improvement over both

CNN-SC and CNN-WV with respect to both mean Dice (p ≤ 0.005)

and mean MHD (p < 0.01). Using the working volume also significantly

reduced the mean processing time from 28.3 ± 1.7 to 3.5 ± 0.5 s per

subject. Example segmentations showing the improvements due to

the use of spatial priors are displayed in Figure 3. These segmenta-

tions are shown without postprocessing (which consists of keeping

only the largest connected component for each label) to better under-

stand the nature of the errors made by the different methods. With-

out spatial priors, the baseline network CNN-B had difficulty

distinguishing between left and right hippocampi, producing isolated

clusters of false positives, and, in the worst cases, mistook contiguous

hippocampal gray matter for background. The addition of spatial

priors largely avoided these errors, and helped to produce smoother

and more anatomically regular segmentations.

3.1.2 | Effect of network architecture

We assessed whether the performance of the CNN-SP method could

be further improved by widening (learning more filters in the 3 × 3 × 3

convolutional layers) or deepening (including more 3 × 3 × 3 con-

volutional layers) the network architecture. For the deeper networks,

we correspondingly increased the size of the input samples in order to

preserve the output size, that is, for each additional 3 × 3 × 3 con-

volutional layer, the size of the input was increased by two voxels in

each spatial dimension). Because of the increased memory require-

ments associated with deeper architectures, during training, we

reduced the batch size to B = 32 as needed. Quantitative results are

reported in Table 3. While widening the network by doubling the num-

ber of learnable filters (from 32 to 64) in convolutional layers L1

through L8 produced no appreciable gain in performance, deepening

the network by increasing the number of 3 × 3 × 3 convolutional layers

resulted in a gradual increase in performance with respect to both

mean Dice and MHD, with a plateau reached when using fourteen or

sixteen 3 × 3 × 3 convolutional layers (corresponding to input samples

with spatial dimensions of 393 and 413 voxels, respectively). The mean

processing time of the deepest network was correspondingly higher,

requiring 10.4 ± 0.5 s per subject with twenty 3 × 3 × 3 convolutional

layers, compared to CNN-SP which required 3.5 ± 0.5 s per subject

with only twelve 3 × 3 × 3 convolutional layers. For subsequent exper-

iments, we opt to evaluate the deepest network, and for brevity

denote the architecture by “CNN-SP-D.”

3.1.3 | Effect of data augmentation

One concern when training deep CNNs with high modeling capacities

is their increased tendency to overfit the training data, thus generaliz-

ing poorly when applied to new unseen testing data. As discussed in

Section 2.3, data augmentation can be used to synthesize new train-

ing data to increase the generalizability of the trained networks. Using

the CNN-SP-D architecture (i.e., twenty 3 × 3 × 3 convolutional

layers, corresponding to input samples with spatial dimension 413

voxels), we assessed the impact of random elastic deformation for

data augmentation in two scenarios: the first, in which all available

training subjects are used, and the second, in which only a randomly

selected subset (25%, or 12 subjects) of the training subjects in each

training fold is used, leaving the test folds unchanged. To determine

the two parameters σe and αi associated with our data augmentation

TABLE 2 Effect of augmenting the CNN-B with CNN-SC alone,
the CNN-WV alone, and both CNN-SP on network performance for
the hippocampus segmentation experiment

Dice (%) MHD (mm)

CNN-B 90.2 (2.8) 0.27 (0.10)

CNN-Ba 87.2 (3.2) 4.59 (2.47)

CNN-WV 90.9 (2.4) 0.26 (0.13)

CNN-WVa 90.6 (2.5) 0.54 (0.59)

CNN-SC 91.3 (2.1) 0.24 (0.09)

CNN-SCa 90.1 (2.6) 0.64 (0.40)

CNN-SP 91.5 (2.0) 0.23 (0.08)

CNN-SPa 91.4 (2.1) 0.25 (0.14)

Note: Mean Dice and MHD values over both left and right hippocampi are

reported, with SDs in parentheses.

Abbreviations: CNN, convolutional neural network; CNN-B, baseline CNN;

CNN-SC, CNN with spatial coordinates; CNN-SP, CNN with both spatial

priors; CNN-WV, CNN with working volume; MHD, modified Hausdorff

distance.
aNo postprocessing was performed.
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scheme (see Section 2.3), we conducted a coarse-grid search (applied

in the second scenario) over σe = {4,8,16} mm and αi = {1,2,4,8} mm,

and found the best performance with σe = 4 mm and αi = 2 mm. These

parameters are used for data augmentation in the remaining experi-

ments. Using these parameters, example randomly deformed training

samples are shown in Figure 4.

Mean Dice and MHD values are reported in Table 4. As expected,

the benefit of using data augmentation was largest when fewer train-

ing subjects were used: when using only 25% of the available training

subjects (12 training subjects per fold), training the networks with

data augmentation increased the mean Dice coefficient by 1.1%

(p = 1 × 10−11) compared to training the networks without augmenta-

tion. The relative increase in mean Dice coefficient was reduced to

only 0.2% (p = 0.06) when using all available training subjects. With

regards to mean MHD, data augmentation resulted in improved per-

formance only in the low-data regime, reducing mean MHD from 0.28

to 0.24 mm (p = 1 × 10−8).

3.1.4 | Comparison to other methods

We further compared several variants of our CNN-based method with

several other popular and/or state-of-the-art segmentation methods

on the same dataset using the segmentations previously produced in

the work of Zandifar et al. (2017), which includes results for four dif-

ferent methods, both before and after applying EC (Wang et al.,

2011), a machine learning based wrapper which attempts to correct

systematic errors made by the initial host segmentation method. The

methods included are FreeSurfer (Fischl, 2012), ANIMAL (Collins &

Pruessner, 2010) (a multiatlas technique combining nonlinear registra-

tion with majority-vote label fusion), traditional PB segmentation

(Coupé et al., 2011) (a multiatlas technique combining linear registra-

tion with PB label fusion), and an augmented approach combining PB

segmentation with nonlinear registration. Mean Dice coefficients and

MHD values are summarized in Table 5, and boxplots of distributions

Dice coefficients are summarized in Figure 5.

F IGURE 3 Example right hippocampus segmentations and respective errors using the baseline network (CNN-B), and the network
augmented with both the working volume and spatial coordinates (CNN-SP). The subjects with the worst, second worst, median, second best,
and best overlap after applying CNN-B are shown for comparison. The left hippocampus is overlaid in green, and the right hippocampus in blue.
Errors are overlaid in red in columns four and six
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Compared to the best method from Zandifar et al. (2017), which

combines PB segmentation with nonlinear registration and EC (PBS

+ NLR + EC), our best performing method (CNN-SP-D + DA) yielded

an improvement of 2.1% in terms of mean Dice and a decrease in

mean MHD of 0.17 mm (over both left and right hippocampi), both of

which were highly statistically significant (p ≤ 10−9). CNN-SP-D + DA

was also considerably more robust than the methods examined in the

work of Zandifar et al., producing fewer outliers with low overlap

(Figure 5). Example hippocampal segmentations comparing PBS

+ NLR + EC to CNN-SP-D + DA are displayed in Figure 6. While the

more minor errors (occurring on the hippocampal boundary) made by

both methods were similar, larger errors made by PBS + NLR + EC

resulted in noncontiguous segmentations (e.g., first and second rows

of Figure 6) that were avoided by CNN-SP-D + DA.

3.2 | Applications to subcortical segmentation
in IBSR dataset and multistructure segmentation
in OASIS scan–rescan dataset

To further validate our method, we further applied it to the task of

subcortical segmentation in the IBSR dataset, and multistructure

TABLE 3 Effect of widening and deepening the CNN-SP
architecture on performance for the hippocampus segmentation
experiment. The number of 3 × 3 × 3 convolutional layers and their
associated number of learnable filters are specified in parentheses
(e.g., [8–32] specifies eight 3 × 3 × 3 convolutional layers each with
32 filters)

Dice (%) MHD (mm]

CNN-SP [8–32] 91.5 [2.0] 0.23 [0.08]

CNN-SP [8–64] 91.4 [2.3] 0.24 [0.12]

CNN-SP [10–32] 91.6 [2.0] 0.23 [0.07]

CNN-SP [12–32] 91.7 [2.1] 0.23 [0.08]

CNN-SP [14–32] 92.0 [1.8] 0.22 [0.06]

CNN-SP [16–32] 91.9 [1.9] 0.21 [0.07]

Note: Mean Dice and MHD values over both left and right hippocampi are

reported, with SDs in parentheses.

Abbreviations: CNN-SP, CNN with spatial priors; MHD, modified

Hausdorff distance.

F IGURE 4 Example random
deformations applied to an original
sample (top left) using the parameters
σc = 4 mm and αi = 2 mm. A grid is
overlaid on the samples to better
highlight their differences

TABLE 4 Effect of DA with random elastic deformations on
CNN-SP-D when using either 25% (12 training subjects per
cross-validation fold) or 100% (48 training subjects per
cross-validation subjects) of the available training data for the
hippocampus segmentation experiment

Dice (%) MHD (mm)

25% CNN-SP-D 90.0 (2.9) 0.28 (0.10)

CNN-SP-D + DA 91.1 (2.1) 0.24 (0.08)

100% CNN-SP-D 91.9 (1.9) 0.21 (0.07)

CNN-SP-D + DA 92.1 (1.9) 0.21 (0.07)

Note: Mean Dice and MHD values over both left and right hippocampi are

reported, with SDs in parentheses.

Abbreviations: DA, data augmentation; CNN-SP, CNN with spatial priors;

MHD, modified Hausdorff distance.
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segmentation in the OASIS scan–rescan dataset, in each case

retraining, the networks on the respective datasets. Dataset details

are provided in the respective sections below. We note that for the

subsequent experiments, the network architecture is almost identical

to that of the full-proposed method used in the hippocampus segmen-

tation experiments—only the number of output channels C (the num-

ber of classes) was changed for each respective segmentation task.

3.2.1 | Subcortical segmentation in the IBSR dataset

The IBSR dataset consists of 18 manually labeled T1w scans acquired

at the Massachusetts General Hospital (http://www.cma.mgh.harvard.

edu/ibsr/data.html). Of the 32 manually labeled structures, as done in

Dolz, Desrosiers, and Ben Ayed (2017), we considered the left and

right thalamus, caudate, putamen, and pallidum, for a total of nine

classes (one class being background). Though the IBSR images are

already roughly aligned, they differ in voxel sizes (ranging from

0.84 × 0.84 × 1.5 to 1 × 1 × 1.5 mm3) and would likely benefit from a

finer-grained registration and resampling. However, to demonstrate

the robustness of our approach to small misalignments, we opted

against this refinement step and used the images without additional

pre-processing. To obtain a segmentation for each subject, we carried

out a sixfold cross-validation (i.e., 15 training subjects and three test

subjects per fold). We compared several variants of our method to the

methods of Dolz, Desrosiers, and Ben Ayed (2017) and to a 2.5D

CNN method (Kushibar et al. (2018)) that uses nonlinear registration

to incorporate spatial probability maps. For the method of Dolz et al.,

we used their publicly available automated segmentations (https://

github.com/josedolz/3D-F-CNN-BrainStruct/tree/master/Results/

IBSR) to calculate performance measures. For the 2.5D CNN method,

we include results exactly as reported in Kushibar et al., since the

automated segmentations are not available for download. Lastly, we

also include results from our own application of FIRST (Patenaude,

Smith, Kennedy, & Jenkinson, 2011) from the FMRIB Software Library

(Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012).

Mean Dice coefficients and MHD values are summarized in

Table 6, and boxplots of distributions of Dice coefficients are shown

in Figure 7. Note that the results from the 2.5D CNN method

(Kushibar et al., 2018) are not included in the boxplots because only

summary statistics were available. Of our CNN-based methods, the

performance of the baseline network CNN-B was poorest overall

TABLE 5 Comparison of four of our CNN-based segmentation
methods with previously reported results (Zandifar et al., 2017) for
the segmentation of the left and right hippocampi in the ADNI
dataset. Each table cell reports the mean Dice coefficient (SD) as a
percentage on top and the mean MHD (SD), in millimeters, on bottom

Left Right Both

CNN-B 90.7 (2.3) 89.8 (3.2) 90.2 (2.8)

0.25 (0.07) 0.29 (0.12) 0.27 (0.10)

CNN-SP 91.5 (1.9) 91.6 (2.1) 91.5 (2.0)

0.23 (0.07) 0.23 (0.09) 0.23 (0.08)

CNN-SP-D 92.0 (1.6) 91.8 (2.2) 91.9 (1.9)

0.21 (0.05) 0.23 (0.08) 0.22 (0.07)

CNN-SP-D + DA 92.0 (2.0) 92.2 (2.1) 92.1 (2.0)

0.22 (0.07) 0.21 (0.07) 0.22 (0.08)

ANIMAL 86.3 (2.6) 85.9 (3.0) 86.1 (2.8)

0.40 (0.07) 0.42 (0.09) 0.41 (0.08)

ANIMAL + EC 86.5 (2.4) 86.2 (3.0) 86.4 (2.7)

0.43 (0.08) 0.44 (0.09) 0.44 (0.08)

FreeSurfer 75.8 (4.7) 75.6 (4.8) 75.7 (4.7)

0.94 (0.27) 0.98 (0.24) 0.96 (0.26)

FreeSurfer + EC 85.9 (3.3) 86.3 (3.1) 86.1 (3.2)

0.44 (0.13) 0.42 (0.09) 0.43 (0.11)

PBS 87.5 (2.5) 87.3 (3.6) 87.4 (3.1)

0.40 (0.09) 0.40 (0.13) 0.40 (0.11)

PBS + EC 88.2 (2.5) 88.2 (3.6) 88.2 (3.1)

0.39 (0.08) 0.40 (0.14) 0.39 (0.11)

PBS + NLR 88.3 (2.2) 88.0 (3.2) 88.1 (2.7)

0.39 (0.07) 0.39 (0.12) 0.39 (0.10)

PBS + NLR + EC 89.1 (2.6) 88.9 (3.1) 89.0 (2.6)

0.37 (0.06) 0.37 (0.12) 0.37 (0.10)

Note: The top performing method is emboldened in each column.

Abbreviations: CNN, convolutional neural network; CNN-B, baseline CNN;

CNN-SP, CNN with spatial priors; EC, error correction, NLR, nonlinear

registration, PBS, patch-based segmentation.

F IGURE 5 Boxplots of distributions of Dice coefficients (over
both left and right hippocampi) from various methods for the
segmentation of the left and right hippocampi in the Alzheimer's
Disease Neuroimaging Initiative (ADNI) dataset
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(mean Dice = 86.5% over all structures). Incorporating spatial priors,

CNN-SP produced a large (p = 9 × 10−15) increase in performance

(mean Dice = 88.5%). Further deepening the network (CNN-SP-D)

produced no significant increase in performance with respect to mean

Dice (p = 0.76), which could be likely attributed to an increased capac-

ity for overfitting due to the higher modeling capacity of the deeper

network combined with the highly limited training data (i.e., only

15 subjects per cross-validation fold) in this experiment. Indeed, regu-

larizing the deeper network using data augmentation (CNN-SP-D

+ DA) produced a large (p = 2 × 10−14) increase in overlap (mean

Dice = 89.5%) compared to CNN-SP-D. A similar pattern was

observed with respect to mean MHD.

Comparing our methods to those from other works, our best per-

forming method without data augmentation (CNN-SP-D) performed

similarly to the 2.5D CNN approach (Kushibar et al., 2018), achieving

segmentations with slightly better overlap in the putamen and

pallidum, and slightly worse overlap in the thalamus and caudate.

However, we CNN-SP-D does not depend on expensive nonlinear

registration, making it considerably faster (16.4 ± 2.0 s per subject)

compared to the 2.5D CNN approach (approximately 5 min per sub-

ject). The method of Dolz et al. performed better than our baseline

method CNN-B with respect to both mean Dice (p = 3 × 10−4) and

mean MHD (p = 2 × 10−4). Compared to the method of Dolz et al.,

both of our CNN-based methods incorporating spatial priors (CNN-SP

and CNN-SP-D) resulted in significant increases with respect to mean

Dice (p < 0.01) but not with respect to mean MHD (p > 0.21). Finally,

combining CNN-SP-D with data augmentation resulted in the best

performance out of the six CNN-based methods with respect to both

mean Dice and mean MHD (p < 2 × 10−11). However, we note that

the data augmentation scheme used in this work is general and could

be used to also boost the performance of the other CNN-based

methods under comparison.

F IGURE 6 Example right hippocampus segmentations and respective errors using NLR + PB + EC and our best performing method CNN-SP-
D + DA. The subjects with the worst, second worst, median, second best, and best overlap after applying NLR + PB + EC are shown for
comparison. Errors are overlaid in red in columns four and six. EC, error correction; NLR, nonlinear registration; PBS, patch based; CNN-SP, CNN
with spatial priors
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As shown in Figure 7, CNN-SP-D + DA produced fewer outliers

with low overlap coefficients when compared to CNN-B and the

method of Dolz et al., two similar CNN-based methods which do not

exploit spatial priors. Example segmentations comparing the approach

of Dolz et al. to CNN-SP-D + DA are shown in Figure 8. Our method

produced more contiguous segmentations, for example, better

avoiding irregular expansions of the segmentation into the surround-

ing lateral ventricle (first and fourth rows of Figure 8) and better

avoiding small clusters of false positives (second row of Figure 8).

3.2.2 | Multistructure segmentation in the OASIS
scan–rescan dataset

The OASIS (Marcus et al., 2007) scan–rescan dataset contains T1w

scans of 20 healthy young adult subjects each scanned on two sepa-

rate occasions within a period of 90 days. The images were acquired

on a 1.5 T Siemens Vision scanner using an MP-RAGE acquisition

sequence, and have a size of 256 × 256 × 128 voxels with a voxel size

of 1 × 1 × 1.25 mm3. Expert manually generated labels of both ses-

sion images are available by subscription to Neuromorphometrics

(http://www.neuromorphometrics.com). All CNN-based methods

used pre-processing consisting of N3 nonuniformity correction and

affine registration to the MNI-ICBM152 template with 1 × 1 × 1 mm3

resolution. All registrations for this experiment were carried out using

a multiscale registration algorithm with a normalized mutual

TABLE 6 Comparison of various segmentation methods for the segmentation of eight sub-cortical structures in the IBSR dataset. Each table
cell reports the mean Dice coefficient (SD) as a percentage on top and the mean MHD (SD), in millimeters, on bottom

2.5D CNN CNN-B CNN-SP CNN-SP-D CNN-SP-D + DA Dolz et al. FIRST

L thalamus 91.0 (1.4) 88.3 (2.2) 90.8 (1.4) 90.2 (1.4) 91.1 (1.2) 90.1 (3.1) 89.9 (1.1)

N/A 0.56 (0.13) 0.42 (0.09) 0.47 (0.10) 0.42 (0.07) 0.45 (0.17) 0.52 (0.06)

R thalamus 91.4 (1.6) 89.6 (1.9) 91.0 (1.4) 90.9 (1.5) 91.5 (1.3) 90.7 (2.8) 89.0 (1.3)

N/A 0.58 (0.39) 0.43 (0.08) 0.43 (0.08) 0.41 (0.07) 0.44 (0.16) 0.55 (0.07)

L caudate 89.6 (1.8) 86.2 (5.1) 88.7 (3.8) 89.2 (2.4) 89.9 (2.2) 87.7 (6.4) 82.9 (2.6)

N/A 0.37 (0.16) 0.28 (0.11) 0.27 (0.07) 0.25 (0.06) 0.39 (0.46) 0.41 (0.08)

R caudate 89.6 (2.0) 87.4 (5.4) 88.9 (3.0) 88.4 (2.6) 90.0 (2.7) 87.7 (7.3) 85.0 (4.7)

N/A 0.35 (0.25) 0.29 (0.10) 0.31 (0.09) 0.26 (0.10) 0.33 (0.29) 0.34 (0.12)

L putamen 90.0 (1.4) 88.5 (2.7) 90.3 (1.5) 90.4 (1.4) 91.0 (1.2) 89.0 (4.5) 88.7 (1.4)

N/A 0.37 (0.12) 0.32 (0.08) 0.32 (0.09) 0.30 (0.07) 0.38 (0.25) 0.41 (0.08)

R putamen 90.4 (1.2) 88.5 (3.0) 90.3 (1.6) 90.5 (1.5) 91.6 (1.3) 89.3 (5.4) 88.6 (1.1)

N/A 0.37 (0.12) 0.32 (0.09) 0.32 (0.09) 0.27 (0.06) 0.39 (0.35) 0.42 (0.08)

L pallidum 82.6 (5.0) 82.0 (3.9) 83.9 (2.6) 84.5 (2.8) 85.5 (2.2) 82.6 (5.7) 82.3 (2.4)

N/A 0.47 (0.14) 0.42 (0.12) 0.40 (0.12) 0.38 (0.09) 0.44 (0.18) 0.42 (0.09)

R pallidum 82.9 (4.6) 81.4 (6.1) 84.0 (2.8) 84.4 (3.0) 85.5 (2.7) 83.1 (6.3) 82.8 (2.6)

N/A 0.49 (0.21) 0.41 (0.12) 0.40 (0.12) 0.38 (0.12) 0.43 (0.17) 0.41 (0.09)

All N/A 86.5 (4.9) 88.5 (3.6) 88.6 (3.2) 89.5 (3.1) 87.5 (6.0) 86.2 (3.8)

N/A 0.45 (0.22) 0.36 (0.12) 0.37 (0.11) 0.33 (0.11) 0.41 (0.27) 0.44 (0.10)

Note: The top performing method is emboldened in each row.

Abbreviations: CNN-B, baseline CNN; CNN-SP, CNN with spatial priors; MHD, modified Hausdorff distance.

F IGURE 7 Boxplots of distributions of Dice coefficients (over all
structures) from various methods for the segmentation subcortical
structures in the IBSR dataset
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information similarity measure, based on the MINC toolkit (https://

github.com/bic-mni) and detailed in Dadar, Fonov, and Collins (2018).

To obtain a segmentation for each subject, we carried out a five-

fold cross validation experiment (i.e., 16 training subjects and four

testing subjects per fold) using the first session images. For each fold,

we additionally applied the trained networks to the same test subjects

belonging to the second imaging session. All label estimates were then

resampled back to native space, using nearest-neighbor interpolation,

with the inverse of the corresponding transform estimated during the

preprocessing stage.

Accuracy (i.e., agreement with manual labels) was assessed using a

fivefold cross validation (i.e., 16 training subjects and four testing sub-

jects per fold) on images from the first session only using the manual

labels as the reference labels. To estimate the scan–rescan reliability

of the different labeling methods, second-session images (and their

corresponding labels) were registered (by estimating a six-parameter

rigid transformation) to the corresponding first-session images, and

the consistency across label pairs was assessed using both the Dice

coefficient and the MHD measures.

While the manual labelings for this dataset were carried out in

accordance with a strict protocol, no special effort was made to make

the boundaries between regions as smooth as possible. In preliminary

studies, we observed that the manual reliability estimates appeared

artificially low because of these noisy boundaries. We therefore

smoothed the manual labels using median filtering with a small

3 × 3 × 3 kernel, which resulted in higher and more reasonable man-

ual reliability estimates. For completeness, we also performed the

same analysis below but using the original unfiltered manual segmen-

tations as reference labels (see supplementary material, Tables S1

and S2).

The scan–rescan reliabilities of manual labeling as well as the

automated methods under comparison are reported in Table 7, and

F IGURE 8 Example subcortical segmentations and respective errors using the method of Dolz, Desrosiers, and Ben Ayed (2017) and our best
performing method CNN-SP-D + DA. The subjects with the worst, second worst, median, second best and best overlap after applying the
method of Dolz et al. are shown for comparison. The putamen is overlaid in yellow and blue, and the caudate in light purple and green. Errors are
overlaid in red in columns four and six
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boxplots of distributions of Dice coefficients are shown in Figure 9.

Each of the automated methods under comparison produced more

reliable segmentations compared to manual segmentation (mean

Dice = 86.9%, mean MHD = 0.39 mm, over all structures). FIRST was

comparably reliable (mean Dice = 91.7%, mean MHD = 0.24 mm) to

CNN-SP, and more reliable compared to CNN-B (mean Dice = 90.7%,

mean MHD = 0.44 mm). Both CNN-SP-D and CNN-SP-D + DA pro-

duced the most reliable segmentations (mean Dice ≥92.2%, mean

MHD ≤0.21 mm).

The accuracy of the automated methods under comparison is

reported in Table 8, and boxplots of distributions of Dice coefficients

are shown in Figure 10. Among the CNN-based methods, CNN-B

(mean Dice = 84.6%, mean MHD = 0.50 mm over all structures) again

performed poorest overall, followed by CNN-SP (mean Dice = 85.0%,

mean MHD = 0.48 mm). It is worth noting that in this dataset,

augmenting the baseline network with spatial priors provided a rela-

tively minor performance gain compared to the previous segmenta-

tion tasks. Using a deeper network (CNN-SP-D), however, proved

particularly beneficial for this task (mean Dice = 86.0%, mean

MHD = 0.42 mm). Finally, CNN-SP-D was further improved using

data augmentation (CNN-SP-D + DA), resulting in the best perfor-

mance (mean Dice = 86.6%, mean MHD = 0.41 mm). A Wilcoxon

signed-rank test between the accuracy of CNN-SP-D + DA and the

reliability of manual labelings (mean Dice = 86.9%, mean

MHD = 0.39 mm) showed no significant difference with respect to

mean Dice (p = 0.72); however, the mean MHD of manual labelings

was slightly but significantly lower (p = 0.02) compared to CNN-SP-D

+ DA.

Despite FIRST being a highly reliable method, it was overall the

least accurate method under comparison (mean Dice = 78.0%, mean

MHD = 0.77 mm, over all structures). This is likely because FIRST

does not learn from user-specified training data, but instead incorpo-

rates priors derived from its own set of training data, which may differ

with respect to the anatomical protocol used for manual labeling.

Example segmentations comparing FIRST to our best performing

CNN-based method are shown in Figure 11. Both FIRST and

TABLE 7 Reliability in the OASIS scan–rescan dataset. Each table cell reports the mean Dice coefficient (SD) as a percentage on top and the
mean MHD (SD), in millimeters, on bottom

CNN-B CNN-SP CNN-SP-D CNN-SP-D + DA FIRST Manual

L caudate 92.4 (1.5) 92.1 (1.8) 92.7 (1.5) 92.7 (1.5) 90.8 (5.0) 87.2 (2.3)

0.18 (0.03) 0.19 (0.05) 0.18 (0.03) 0.17 (0.03) 0.24 (0.14) 0.33 (0.06)

R caudate 91.9 (1.2) 91.8 (1.2) 92.5 (0.9) 92.5 (0.8) 91.9 (0.9) 87.5 (2.4)

0.22 (0.14) 0.19 (0.03) 0.18 (0.02) 0.18 (0.02) 0.20 (0.02) 0.33 (0.11)

L putamen 93.3 (1.5) 93.7 (1.4) 94.0 (1.2) 93.9 (1.2) 94.5 (0.6) 88.9 (2.2)

0.20 (0.04) 0.19 (0.04) 0.19 (0.04) 0.18 (0.04) 0.20 (0.02) 0.35 (0.09)

R putamen 93.2 (1.2) 93.5 (1.4) 94.0 (0.8) 93.9 (0.9) 94.6 (0.5) 89.1 (2.0)

0.21 (0.04) 0.20 (0.04) 0.19 (0.03) 0.19 (0.03) 0.20 (0.02) 0.35 (0.08)

L thalamus 94.5 (1.7) 95.3 (0.9) 95.4 (0.8) 95.5 (0.7) 96.1 (0.7) 91.5 (0.7)

0.37 (0.59) 0.21 (0.04) 0.20 (0.03) 0.20 (0.03) 0.20 (0.03) 0.41 (0.04)

R thalamus 94.8 (0.8) 95.3 (0.8) 95.5 (0.6) 95.5 (0.6) 95.9 (0.6) 91.8 (0.9)

0.33 (0.32) 0.21 (0.04) 0.20 (0.03) 0.21 (0.03) 0.21 (0.03) 0.40 (0.06)

L hippocampus 89.2 (2.0) 90.9 (1.5) 91.1 (1.2) 91.5 (1.2) 90.8 (1.3) 86.6 (1.1)

0.24 (0.05) 0.22 (0.04) 0.21 (0.03) 0.20 (0.02) 0.24 (0.05) 0.34 (0.04)

R hippocampus 89.0 (3.3) 90.1 (1.8) 91.0 (1.1) 91.2 (0.9) 91.1 (0.8) 86.2 (1.1)

0.37 (0.61) 0.24 (0.07) 0.21 (0.03) 0.20 (0.02) 0.22 (0.02) 0.36 (0.06)

L pallidum 91.3 (2.3) 92.1 (1.7) 92.2 (1.7) 92.8 (1.4) 92.3 (1.9) 85.5 (4.7)

0.23 (0.05) 0.21 (0.05) 0.21 (0.05) 0.19 (0.04) 0.22 (0.05) 0.43 (0.14)

R pallidum 90.5 (1.7) 91.7 (2.0) 92.1 (1.0) 92.4 (1.2) 91.2 (2.9) 85.7 (3.6)

0.24 (0.04) 0.22 (0.07) 0.20 (0.03) 0.20 (0.04) 0.26 (0.10) 0.41 (0.12)

L amygdala 82.0 (19.1) 87.7 (2.7) 88.1 (2.8) 88.6 (2.7) 84.8 (7.2) 80.8 (4.5)

2.37 (8.90) 0.26 (0.05) 0.26 (0.06) 0.24 (0.05) 0.34 (0.15) 0.48 (0.16)

R amygdala 86.5 (3.1) 86.3 (7.9) 87.6 (2.8) 88.7 (2.4) 85.8 (5.2) 81.4 (2.4)

0.28 (0.07) 0.31 (0.22) 0.27 (0.06) 0.25 (0.05) 0.32 (0.14) 0.44 (0.08)

All 90.7 (6.8) 91.7 (3.8) 92.2 (2.9) 92.4 (2.6) 91.7 (4.7) 86.9 (4.2)

0.44 (2.65) 0.22 (0.09) 0.21 (0.05) 0.20 (0.04) 0.24 (0.09) 0.39 (0.11)

Note: The top performing method is emboldened in each row.

Abbreviations: CNN-B, baseline CNN; CNN-SP, CNN with spatial priors; MHD, modified Hausdorff distance.
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CNN-SP-D + DA produced very smooth labelings; however, FIRST

had more difficulty in delineating the caudate (which tended to be

undersegmented) and the amygdala. We also note that the error

counts (e.g., the fourth and sixth columns of Figure 11) were larger in

this experiment compared to the previous two, particularly along

structure boundaries. We believe that this can be largely attributed to

noisy manual segmentations.

4 | DISCUSSION

While many of the other segmentation methods compared in this

work also performed reasonably well in general, we demonstrated in a

series of three validation experiments that our proposed method con-

sistently produced segmentations with higher accuracy and robust-

ness (i.e., fewer outliers). Using a scan–rescan dataset, we further

demonstrated that the proposed method is highly reliable and pro-

duces segmentations with an accuracy comparable to that of the

scan–rescan reliability of expert manual segmentations. Finally, our

proposed method maintains the highly competitive runtime perfor-

mance common among many recent CNN-based methods for seg-

mentation (Dolz, Desrosiers, & Ben Ayed, 2017; Guha Roy et al.,

2018; Kushibar et al., 2018). While the short runtimes associated with

these recent CNN-based methods (requiring seconds or minutes as

opposed to hours for some multi-atlas segmentation methods

(e.g., Asman & Landman, 2013; Wang & Yushkevich, 2013) may not

be of crucial importance for some tasks, runtimes on the orders of

seconds allows for the processing of large datasets on single GPU

workstations instead of computing clusters, and may be of particular

clinical importance for intraoperative applications.

Because of the high degree of regularity in the location of many

neuroanatomical structures when normalized to a common space,

spatial context is a powerful tool to exploit in MRI segmentation. In

Section 3.1.1, it was demonstrated that using spatial priors to assist

CNN-based segmentation not only improves performance, but also

significantly reduces the computation time required for applying a

trained CNN. While a major advantage of deep-learning methods over

traditional multi-atlas segmentation is their reduced reliance on

TABLE 8 Accuracy in the OASIS
scan–rescan dataset. Each table cell
reports the mean Dice coefficient (SD) as
a percentage on top and the mean MHD
(SD), in millimeters, on bottom

CNN-B CNN-SP CNN-SP-D CNN-SP-D + DA FIRST

L caudate 85.7 (3.8) 85.4 (3.7) 86.5 (3.0) 87.0 (2.8) 71.3 (6.3)

0.45 (0.25) 0.44 (0.16) 0.36 (0.09) 0.37 (0.11) 0.94 (0.22)

R caudate 86.5 (3.2) 85.8 (4.0) 87.1 (3.0) 87.1 (2.6) 68.4 (7.2)

0.42 (0.22) 0.42 (0.33) 0.34 (0.09) 0.34 (0.08) 1.00 (0.25)

L putamen 88.1 (2.3) 88.5 (3.0) 89.2 (3.0) 89.3 (2.6) 84.7 (2.1)

0.41 (0.10) 0.37 (0.11) 0.35 (0.11) 0.34 (0.10) 0.60 (0.09)

R putamen 88.4 (1.9) 88.6 (1.9) 89.3 (2.1) 89.4 (2.0) 84.2 (2.5)

0.38 (0.07) 0.38 (0.07) 0.36 (0.08) 0.35 (0.07) 0.64 (0.11)

L thalamus 89.5 (1.6) 89.5 (2.2) 90.4 (2.1) 90.5 (1.7) 86.1 (2.3)

0.55 (0.09) 0.55 (0.17) 0.48 (0.13) 0.47 (0.10) 0.79 (0.13)

R thalamus 90.5 (1.6) 90.8 (1.9) 91.8 (1.2) 91.6 (1.2) 88.0 (1.3)

0.65 (0.57) 0.49 (0.24) 0.41 (0.07) 0.43 (0.07) 0.68 (0.08)

L hippocampus 81.4 (5.8) 84.3 (3.2) 85.2 (2.0) 86.9 (1.5) 80.0 (1.8)

0.52 (0.22) 0.51 (0.35) 0.40 (0.09) 0.34 (0.06) 0.60 (0.07)

R hippocampus 83.1 (3.5) 83.9 (3.8) 85.7 (2.0) 86.2 (1.6) 79.7 (2.1)

0.44 (0.13) 0.55 (0.59) 0.39 (0.10) 0.39 (0.08) 0.60 (0.07)

L pallidum 83.7 (3.4) 83.7 (4.4) 83.7 (4.5) 84.6 (4.4) 77.3 (6.2)

0.50 (0.12) 0.51 (0.16) 0.51 (0.16) 0.47 (0.16) 0.78 (0.26)

R pallidum 82.8 (4.3) 84.7 (4.3) 84.9 (4.1) 86.0 (3.8) 76.3 (6.5)

0.50 (0.15) 0.46 (0.16) 0.45 (0.14) 0.42 (0.13) 0.79 (0.24)

L amygdala 76.6 (5.1) 77.6 (5.0) 77.2 (5.4) 79.1 (5.4) 68.8 (9.2)

0.62 (0.32) 0.54 (0.13) 0.58 (0.17) 0.53 (0.17) 0.98 (0.37)

R amygdala 78.8 (4.1) 77.6 (7.4) 80.6 (2.9) 81.7 (3.6) 70.6 (5.0)

0.50 (0.15) 0.57 (0.23) 0.47 (0.09) 0.45 (0.11) 0.85 (0.16)

All 84.6 (5.5) 85.0 (5.7) 86.0 (5.1) 86.6 (4.6) 78.0 (8.4)

0.50 (0.25) 0.48 (0.27) 0.42 (0.13) 0.41 (0.13) 0.77 (0.24)

Note: The top performing method is emboldened in each row.

Abbreviations: CNN-B, baseline CNN; CNN-SP, CNN with spatial priors; MHD, modified Hausdorff

distance.
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extensive image preprocessing, our method only requires linear regis-

tration to a common space, which is fast and in many cases necessary

for subsequent processing steps. While the specific choice of linear

registration algorithm may not be of crucial importance, due to our

methods reliance on spatial priors, we expect that failed registrations

would result in correspondingly poor segmentations. However, we

note that linear registration can be highly robust: Dadar et al. (2018)

report a failure rate of less than 0.5% using our preferred registration

tool, publicly available as part of the MINC toolkit.

Further performance gains could possibly be obtained by using

nonlinear registration to a common template: the use of nonlinear reg-

istration would, in ideal circumstances, produce more restrictive work-

ing volumes (further reducing processing time when applying a trained

CNN), and increase the predictive power of spatial coordinates. How-

ever, the use of nonlinear registration introduces several practical

complications: traditional nonlinear registration is extremely computa-

tionally expensive relative to the time required to apply a trained

CNN, and study-specific templates are often required for robust

nonlinear registration. Combining our approach with deep-learning

approaches for nonlinear image registration, which have potential for

much better computational efficiency, may be a promising avenue for

future work. We emphasize however that any performance gains due

to the use of spatial priors are to be expected only in proportion to

the spatial regularity of the structure of interest. For example, it would

not be helpful to use either a working volume or spatial coordinates

for the segmentation of brain tumors, which are highly heterogeneous

in shape, size, appearance, and location.

Deep networks like the ones used in this work have a high model-

ing capacity and are therefore can be more prone to overfitting, par-

ticularly when few training samples are available. Indeed this is

commonly the case for tasks such as neuroanatomical segmentation,

where generating large quantities of high quality training data is a very

tedious and time-consuming task. While subsampling a volume into

smaller subvolumes (patches) is effectively a form of data augmenta-

tion, many of the patches extracted from or nearby a particular struc-

ture of a given subject will overlap to a large extent (particularly for

small structures) and will therefore be somewhat redundant. Over-

fitting is therefore still possible (as observed in Section 3.1.2), making

more aggressive data augmentation schemes necessary for training

networks with good generalizability. While many other techniques

have been proposed to deal with limited training data (e.g., fine-tuning

networks pretrained on automatic segmentations as done in Guha

Roy et al. (2018)), we demonstrated excellent performance using a

data augmentation scheme based on random elastic deformations.

More advanced deformation-based techniques could be also investi-

gated, for example, learning a more limited space of plausible defor-

mations using statistical modeling techniques (Hauberg, Freifeld,

Larsen, Fisher, & Hansen, 2016; Onofrey, Papademetris, & Staib,

2015), generating random topology-preserving diffeomorphisms, or a

combination of both. Assessing the impact of more realistic transfor-

mations for data augmentation is a promising research direction which

we leave to future work.

Further contributing to the good performance of the proposed

method in cases of very limited training data is the relatively low num-

ber of parameters associated with our networks (~5 × 105 parameters

in our deep network, limiting the capacity to overfit (for comparison,

F IGURE 9 Reliability in OASIS scan–rescan dataset. Boxplots of
distributions of Dice coefficients (over all structures) of various methods
for are plotted

F IGURE 10 Accuracy in OASIS scan–rescan dataset. Boxplots of
distributions of Dice coefficients (over all structures) of various
methods are plotted
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we note that the original U-Net architecture (Ronneberger et al.,

2015) has ~2 × 107 parameters). This is in large part due to our choice

of using only 32 learnable convolutional filters per layer, since widen-

ing the networks showed no appreciable improvement in performance

(see Section 3.1.2). On the other hand, increasing the depth of the

network (and correspondingly increasing the size of the input patch)

resulted in considerable performance gains, which can be attributed

to the increased spatial context available to the network in addition to

a much higher modeling capacity. Indeed, it has been demonstrated

that making networks deeper, as opposed to wider, is a more

parameter-efficient way of increasing the modeling capacity of a net-

work (Eldan & Shamir, 2016). While it is likely that the performance of

our network could be further improved by fine-tuning the network

architecture for specific segmentation tasks, we opted against such an

approach to highlight the versatility of this particular network

architecture.

A related problem concerns that of generalization across datasets.

Since the learned convolutional layers (particularly deeper into the

network (Ghafoorian et al., 2017)) are highly tailored to the peculiari-

ties of the training data, it is commonly the case that networks trained

on a certain dataset perform poorly when applied to an unseen

dataset. Nonetheless, robustness to differences between training and

testing images (e.g., due to differences in age, health, scanner type,

field strength, and/or acquisition sequence) is a highly desirable qual-

ity of any method for MRI segmentation. While the ADNI and IBSR

datasets considered in this work are highly heterogeneous, still more

challenging scenarios are commonly encountered in practice. For

example, given the often prohibitively high cost of generating high

quality manual labelings, it may be desirable to apply a trained classi-

fier to images do not have an adequate representation whatsoever in

the training set. Future work will address this problem by leveraging

so-called “domain adaptation” methods (e.g., Ganin et al., 2016;

F IGURE 11 Example multistructure segmentations and respective errors using FIRST and our best performing method CNN-SP-D + DA. The
subjects with the worst, second worst, median, second best, and best overlap after applying FIRST are shown for comparison. The hippocampus is
overlaid in blue, amygdala in brown, thalamus in yellow, putamen in pink, and caudate in light purple. Errors are overlaid in red in columns four
and six
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Hoffman, Wang, Yu, & Darrell, 2016) to learn networks which are

robust to differences between the training and target image domains,

further increasing the general applicability of our approach.
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